Quantum dots (QDs), with the unique merits of narrow and tunable photoluminescence (PL) wavelength, high PL quantum yield, have gained significant interest in fields such as display, solar energy conversion, bioimaging, and encrypted quantum communication. On the other hand, photochromic molecular switches (PMS) can undergo reversible interconversion between (at least) two distinct states at the molecular scale upon light irradiation. When combining QDs and PMS, the resulting hybrid systems exhibit synergistic functionalities and light responsiveness, enabling precise and reversible modulation over PL intensity/color, energy/electron transfer, and motion with high temporal and spatial resolution in a non-invasive manner. This perspective explores the recent advancements in the combination method, light-responsive mechanism, and functions of QD-PMS hybrids. The applications of QD-PMS hybrids are also highlighted as light-responsive materials in bioimaging, information processing, sensing, optoelectrical devices, and discuss future challenges, opportunities, and directions for enhancing performance and exploring applications in next-generation light-responsive materials and smart optoelectronic devices.